谷歌浏览器插件
订阅小程序
在清言上使用

Transcriptomic and metabolomic profile changes in the liver of Sprague Dawley rat offspring after maternal PFOS exposure during gestation and lactation

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY(2024)

引用 0|浏览10
暂无评分
摘要
Epidemiological and experimental research has indicated an association between perfluorooctane sulfonate (PFOS) exposure and liver disease. However, the potential hepatotoxic effects and mechanisms of low-level prenatal PFOS exposure in offspring remain ambiguous. The objective of this research was to examine the alterations in liver transcriptomic and metabolomic profiles in offspring rats at postnatal day (PND) 30 following gestational and lactational exposure to PFOS (from gestational day 1 to 20 and PND 1 to 21). Pregnant Sprague-Dawley rats were separated into a control group (3% starch gel solution, oral gavage) and a PFOS exposure group (0.03 mg/kg body weight per day, oral gavage). Histopathological changes in liver sections were observed by hematoxylin and eosin staining. Biochemical analysis was conducted to evaluate changes in glucose and lipid metabolism. Transcriptomic and metabolomic analyses were utilized to identify significant genes and metabolites associated with alterations of liver glucose and lipid metabolism through an integrated multi-omics analysis. No significant differences were found in the measured biochemical parameters. In total, 167 significant differ-entially expressed genes (DEGs) related to processes such as steroid biosynthesis, PPAR signaling pathway, and fat digestion and absorption were identified in offspring rats in the PFOS exposure group. Ninety-five altered metabolites were exhibited in the PFOS exposure group, such as heptaethylene glycol, lysoPE (0:0/18:0), lucidenic acid K, and p-Cresol sulfate. DEGs associated with steroid biosynthesis, PPAR signaling pathway, fat digestion and absorption were significantly upregulated in the PFOS exposure group (P < 0.05). The analysis of correlations indicated that there was a significant inverse correlation between all identified differential metabolites and the levels of fasting blood glucose, high-density lipoprotein, and triglycerides in the PFOS exposure group (P < 0.05). Our findings demystify that early-life PFOS exposure can lead to alterations in transcriptomic and metabolomic profiles in the offspring's liver, which provided mechanistic insights into the potential hepatotoxicity and developmental toxicity associated with environmentally relevant levels of PFOS exposure.
更多
查看译文
关键词
Perfluorooctane sulfonate,Metabolomics,Transcriptomics,Offspring,Liver
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要