Extracting Error Thresholds through the Framework of Approximate Quantum Error Correction Condition

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
The robustness of quantum memory against physical noises is measured by two methods: the exact and approximate quantum error correction (QEC) conditions for error recoverability, and the decoder-dependent error threshold which assesses if the logical error rate diminishes with system size. Here we unravel their relations and propose a unified framework to extract an intrinsic error threshold from the approximate QEC condition, which could upper bound other decoder-dependent error thresholds. Our proof establishes that relative entropy, effectively measuring deviations from exact QEC conditions, serves as the order parameter delineating the transition from asymptotic recoverability to unrecoverability. Consequently, we establish a unified framework for determining the error threshold across both exact and approximate QEC codes, addressing errors originating from noise channels as well as those from code space imperfections. This result sharpens our comprehension of error thresholds across diverse QEC codes and error models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要