Multiscale insights into postnatal aortic development

Biomechanics and Modeling in Mechanobiology(2023)

引用 0|浏览5
暂无评分
摘要
Despite its vital importance for establishing proper cardiovascular function, the process through which the vasculature develops and matures postnatally remains poorly understood. From a clinical perspective, an ability to mechanistically model the developmental time course in arteries and veins, as well as to predict how various pathologies and therapeutic interventions alter the affected vessels, promises to improve treatment strategies and long-term clinical outcomes, particularly in pediatric patients suffering from congenital heart defects. In the present study, we conducted a multiscale investigation into the postnatal development of the murine thoracic aorta, examining key allometric relations as well as relationships between in vivo mechanical stresses, collagen and elastin expression, and the gradual accumulation of load-bearing constituents within the aortic wall. Our findings suggest that the production of fibrillar collagens in the developing aorta associates strongly with the ratio of circumferential stresses between systole and diastole, hence emphasizing the importance of a pulsatile mechanobiological stimulus. Moreover, rates of collagen turnover and elastic fiber compaction can be inferred directly by synthesizing transcriptional data and quantitative histological measurements of evolving collagen and elastin content. Consistent with previous studies, we also observed that wall shear stresses acting on the aorta are similar at birth and in maturity, supporting the hypothesis that at least some stress targets are established early in development and maintained thereafter, thus providing a possible homeostatic basis to guide future experiments and inform future predictive modeling.
更多
查看译文
关键词
Development,Maturation,Aorta,Modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要