Olivine-catalyzed glycolaldehyde and sugar synthesis under aqueous conditions: Application to prebiotic chemistry

EARTH AND PLANETARY SCIENCE LETTERS(2024)

引用 0|浏览11
暂无评分
摘要
The presence of minerals in the prebiotic environment likely shaped the evolution of organic matter, thereby contributing to the emergence of prebiotic systems. Records of such systems are lacking and the interactions between abiotic organic matter and primary minerals remain poorly understood. Here, we demonstrate the ability of olivine silicates, in simulated early Earth or planetary aqueous environments, to catalyse glycolaldehyde formation from only formaldehyde, and help producing sugars that are essential components for life, through the formose reaction. By combining comprehensive gas chromatography analyses on experimental samples with quantum chemical simulations, we provide a mechanism for an olivine-catalyzed glycolaldehyde formation. Our findings suggest that olivine plays a triple role in the formose chemical network: maintaining an alkaline pH, enabling the initiation step towards the formation of glycoladehyde (which is typically the most challenging step) and promoting the autocatalytic cycle. These results open-up new scenarios on the impact of primary minerals on the evolution of chemical pathways in aqueous environments that were probably essential for the emergence of the first biomolecules.
更多
查看译文
关键词
Olivine catalysis,Formose reaction,Sugars,Phyllosilicates,Prebiotic chemistry,Aqueous alteration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要