Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer

BIOSENSORS & BIOELECTRONICS(2024)

引用 0|浏览0
暂无评分
摘要
To develop a reliable surface-enhanced Raman scattering (SERS) immunoassay as a new liquid biopsy modality, SERS nanoprobes emitting strong and stable signals are necessary. However, Ag nanoparticles used as SERS nanoprobes are prone to rapid fading of SERS signals by oxidation. This has driven the development of a new strategy for Ag-based SERS nanoprobes emitting stable and strong SERS signals over time. Herein, Ag nanogap shells entrapping Raman labels are created in the confined pores of mesoporous silica nanoparticles (AgNSM) through a rapid single-step reaction for SERS liquid biopsy. Each AgNSM nanoprobe possesses multiple nanogaps of 1.58 nm to entrap Raman labels, allowing superior long-term SERS signal stability and large enhancement of 1.5 x 106. AgNSM nanoprobes conjugated with an antibody specific for carbohydrate antigen (CA)19-9 are employed in the SERS sandwich immunoassay including antibody-conjugated magnetic nanoparticles for CA19-9 detection, showing a two orders of magnitude lower limit of detection (0.025 U mL-1) than an enzyme-linked immunosorbent assay (0.3 U mL-1). The AgNSM nanoprobe immunoassay accurately quantifies CA19-9 levels from clinical serum samples of early and advanced pancreatic cancer. AgNSM nanoprobes with stable SERS signals provide a new route to SERS liquid biopsy for effective detection of blood biomarkers.
更多
查看译文
关键词
CA19-9 detection,Confined silver nanogap shell,Pancreatic cancer,Surface-enhanced Raman scattering,SERS nanoprobe immunoassay,SERS liquid biopsy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要