ALF: Adaptive Label Finetuning for Scene Graph Generation

Qishen Chen, Jianzhi Liu,Xinyu Lyu, Lianli Gao, Heng Tao Shen,Jingkuan Song

arxiv(2023)

引用 0|浏览7
暂无评分
摘要
Scene Graph Generation (SGG) endeavors to predict the relationships between subjects and objects in a given image. Nevertheless, the long-tail distribution of relations often leads to biased prediction on coarse labels, presenting a substantial hurdle in SGG. To address this issue, researchers focus on unbiased SGG and introduce data transfer methods to transfer coarse-grained predicates into fine-grained ones across the entire dataset. However, these methods encounter two primary challenges: 1) They overlook the inherent context constraints imposed by subject-object pairs, leading to erroneous relations transfer. 2) Additional retraining process are required after the data transfer, which incurs substantial computational costs. To overcome these limitations, we introduce the first plug-and-play one-stage data transfer pipeline in SGG, termed Adaptive Label Finetuning (ALF), which eliminates the need for extra retraining sessions and meanwhile significantly enhance models' relation recognition capability across various SGG benchmark approaches. Specifically, ALF consists of two components: Adaptive Label Construction (ALC) and Adaptive Iterative Learning (AIL). By imposing Predicate-Context Constraints within relation space, ALC adaptively re-ranks and selects candidate relations in reference to model's predictive logits utilizing the Restriction-Based Judgment techniques, achieving robust relation transfer. Supervised with labels transferred by ALC, AIL iteratively finetunes the SGG models in an auto-regressive manner, which mitigates the substantial computational costs arising from the retraining process. Extensive experiments demonstrate that ALF achieves a 16 typical SGG method Motif, with only a 6 to the state-of-the-art method IETrans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要