Characterizing Hybrid Causal Structures with the Exclusivity Graph Approach

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Analyzing the geometry of correlation sets constrained by general causal structures is of paramount importance for foundational and quantum technology research. Addressing this task is generally challenging, prompting the development of diverse theoretical techniques for distinct scenarios. Recently, novel hybrid scenarios combining different causal assumptions within different parts of the causal structure have emerged. In this work, we extend a graph theoretical technique to explore classical, quantum, and no-signaling distributions in hybrid scenarios, where classical causal constraints and weaker no-signaling ones are used for different nodes of the causal structure. By mapping such causal relationships into an undirected graph we are able to characterize the associated sets of compatible distributions and analyze their relationships. In particular we show how with our method we can construct minimal Bell-like inequalities capable of simultaneously distinguishing classical, quantum, and no-signaling behaviors, and efficiently estimate the corresponding bounds. The demonstrated method will represent a powerful tool to study quantum networks and for applications in quantum information tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要