Machine Learning Interatomic Potentials for Reactive Hydrogen Dynamics at Metal Surfaces Based on Iterative Refinement of Reaction Probabilities

JOURNAL OF PHYSICAL CHEMISTRY C(2023)

引用 0|浏览0
暂无评分
摘要
The reactive chemistry of molecular hydrogen at surfaces, notably dissociative sticking and hydrogen evolution, plays a crucial role in energy storage and fuel cells. Theoretical studies can help to decipher underlying mechanisms and reaction design, but studying dynamics at surfaces is computationally challenging due to the complex electronic structure at interfaces and the high sensitivity of dynamics to reaction barriers. In addition, ab initio molecular dynamics, based on density functional theory, is too computationally demanding to accurately predict reactive sticking or desorption probabilities, as it requires averaging over tens of thousands of initial conditions. High-dimensional machine learning-based interatomic potentials are starting to be more commonly used in gas-surface dynamics, yet robust approaches to generate reliable training data and assess how model uncertainty affects the prediction of dynamic observables are not well established. Here, we employ ensemble learning to adaptively generate training data while assessing model performance with full uncertainty quantification (UQ) for reaction probabilities of hydrogen scattering on different copper facets. We use this approach to investigate the performance of two message-passing neural networks, SchNet and PaiNN. Ensemble-based UQ and iterative refinement allow us to expose the shortcomings of the invariant pairwise-distance-based feature representation in the SchNet model for gas-surface dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要