Frameworked Electrolytes: A Pathway Towards Solid Future of Batteries

SMALL(2023)

引用 0|浏览12
暂无评分
摘要
All-solid-state batteries (ASSBs) represent a highly promising next-generation energy storage technology owing to their inherently high safety, device reliability, and potential for achieving high energy density in the post-ara of lithium-ion batteries, and therefore extensive searches are ongoing for ideal solid-state electrolytes (SSEs). Though promising, there is still a huge barrier that limits the large-scale applications of ASSBs, where there are a couple of bottleneck technical issues. In this perspective, a novel category of electrolytes known as frameworked electrolytes (FEs) are examined, where the solid frameworks are intentionally designed to contain 3D ionic channels at sub-nano scales, rendering them macroscopically solid. The distinctive structural design of FEs gives rise to not only high ionic conductivity but also desirable interfaces with electrode solids. This is achieved through the presence of sub-nano channels within the framework, which exhibit significantly different ion diffusion behavior due to the confinement effect. This perspective offers a compelling insight into the potential of FEs in the pursuit of ASSBs, where FEs offer an exciting opportunity to overcome the limitations of traditional solid-state electrolytes and propel the development of ASSBs as the holy grail of energy storage technology. A novel category of electrolytes known as frameworked electrolytes (FEs), where the solid frameworks are purposely designed to contain 3D ionic channels at sub-nano scales, and render them macroscopically solid. Such FEs offer exciting opportunities for the transition from liquid to all solid electrolytes, and propel the development of all-solid-state batteries as the holy grail of energy storage technology.image
更多
查看译文
关键词
frameworked electrolytes,macroscopically solid with 3D sub-nano ionic channels,solid-state batteries,sub-nano confinement effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要