Activation of ETAR and ETBR in myocardial tissue characterizes heart failure induced by experimental autoimmune myocarditis

BMC Cardiovascular Disorders(2024)

引用 0|浏览0
暂无评分
摘要
Background Endothelial dysfunction is characterized by an imbalance between endothelium-derived vasodilatory and vasoconstrictive effects and may play an important role in the development of heart failure. An increasing number of studies have shown that endothelial-derived NO-mediated vasodilation is attenuated in heart failure patients. However, the role of endothelin-1 (ET-1) in heart failure remains controversial due to its different receptors including ET-1 receptor type A (ETAR) and ET-1 receptor type B (ETBR). The aim of this study was to determine whether ET-1 and its receptors are activated and to explore the role of ETAR and ETBR in heart failure induced by myocarditis. Methods We constructed an animal model of experimental autoimmune myocarditis (EAM) with porcine cardiac myosin. Twenty rats were randomized to the control group (3 weeks, n = 5), the extended control group (8 weeks, n = 5), the EAM group (3 weeks, n = 5), the extended EAM group (8 weeks, n = 5). HE staining was used to detect myocardial inflammatory infiltration and the myocarditis score, Masson’s trichrome staining was used to assess myocardial fibrosis, echocardiography was used to evaluate cardiac function, ELISA was used to detect serum NT-proBNP and ET-1 concentrations, and immunohistochemistry and western blotting were used to detect ETAR and ETBR expression in myocardial tissue of EAM-induced heart failure. Subsequently, a model of myocardial inflammatory injury in vitro was constructed to explore the role of ETAR and ETBR in EAM-induced heart failure. Results EAM rats tended to reach peak inflammation after 3 weeks of immunization and developed stable chronic heart failure at 8 weeks after immunization. LVEDd and LVEDs were significantly increased in the EAM group compared to the control group at 3 weeks and 8 weeks after immunization while EF and FS were significantly reduced. Serum NT-proBNP concentrations in EAM (both 3 weeks and 8 weeks) were elevated. Therefore, EAM can induce acute and chronic heart failure due to myocardial inflammatory injury. Serum ET-1 concentration and myocardial ETAR and ETBR protein were significantly increased in EAM-induced heart failure in vivo. Consistent with the results of the experiments in vivo, ETAR and ETBR protein expression levels were significantly increased in the myocardial inflammatory injury model in vitro. Moreover, ETAR gene silencing inhibited inflammatory cytokine TNF-α and IL-1β levels, while ETBR gene silencing improved TNF-α and IL-1β levels. Conclusions ET-1, ETAR, and ETBR were activated in both EAM-induced acute heart failure and chronic heart failure. ETAR may positively regulate EAM-induced heart failure by promoting myocardial inflammatory injury, whereas ETBR negatively regulates EAM-induced heart failure by alleviating myocardial inflammatory injury.
更多
查看译文
关键词
ET-1,ETAR,ETBR,Myocarditis,Heart failure,Endothelial dysfunction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要