Graphene-Derivative Coatings for the Prevention of Opacification Due to Calcification of Hydrophilic Intraocular Lenses

Crystals(2024)

引用 0|浏览1
暂无评分
摘要
The widespread use of hydrophilic intraocular lenses (IOLs) in eye surgery, fabricated by poly-2-(hydroxyethyl methacrylate) (PHEMA), has highlighted their calcification as a serious problem, implying that their surgical explantation is a rather risky process. The field of biomaterials has been developing rapidly in recent years, with research interest turning to the development of novel materials which involve either copolymers of PHEMA or protective functional coatings. Graphene coatings are particularly attractive because of their respective unique properties. In the present work, we present the results of the investigation of the development of graphene coatings on hydrophilic IOLs and their subsequent performance with respect to calcification opacification. Hydrophilic IOLs with a water content of 18% by weight were coated with graphene oxide (GO) by equilibration with GO suspensions in water. The concentrations of the suspensions ranged from 1 × 10−4 to 20 × 10−4% w/v. The GO suspensions were equilibrated with the IOLs for 5 days at a constant temperature, 37 °C, and rotated in 30 mL tubes end over end. This treatment resulted in the formation of a uniform coating of GO on the IOLs verified by scanning electron microscopy (SEM) and other physicochemical methods. The contact angle of the GO-coated IOLs decreased significantly in comparison with the uncoated IOLs. The GO-coated IOLs exhibited a higher tendency to calcify in supersaturated solutions simulating aqueous humor (SAH). The growth rate of hydroxyapatite (Ca5(PO4)3OH, HAP) on GO-coated IOLs was higher in comparison with the respective untreated IOLs. The conversion of the GO coating via a reduction with phenyl hydrazine resulted in the formation of a reduced-graphene (rGO) surface film, as identified by Raman and XPS spectroscopy. The rGO film was hydrophobic (contact angle 100°) and did not calcify in supersaturated calcium phosphate solutions.
更多
查看译文
关键词
hydrophilic,intraocular lenses (IOLs),calcification mechanism,protective coatings,graphene oxide,reduced graphene oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要