A New Population of Mid-infrared-selected Tidal Disruption Events: Implications for Tidal Disruption Event Rates and Host Galaxy Properties

ASTROPHYSICAL JOURNAL(2024)

引用 0|浏览4
暂无评分
摘要
Most tidal disruption events (TDEs) are currently found in time-domain optical and soft X-ray surveys, both of which are prone to significant obscuration. The infrared (IR), however, is a powerful probe of dust-enshrouded environments; hence, we recently performed a systematic search of NEOWISE mid-IR data for nearby, obscured TDEs within roughly 200 Mpc. We identified 18 TDE candidates in galactic nuclei, using difference imaging to uncover nuclear variability among significant host galaxy emission. These candidates were selected based on the following IR light-curve properties: (1) L W2 greater than or similar to 1042 erg s-1 at peak; (2) fast rise, followed by a slow, monotonic decline; (3) no significant prior variability; and (4) no evidence for active galactic nucleus (AGN) activity in Wide-field Infrared Survey Explorer (WISE) colors. The majority of these sources showed no variable optical counterpart, suggesting that optical surveys indeed miss numerous obscured TDEs. Using narrow-line ionization levels and variability arguments, we identified six sources as possible underlying AGN, yielding a total of 12 TDEs in our gold sample. This gold sample yields a lower limit on the IR-selected TDE rate of (2.0 +/- 0.3) x 10-5 galaxy-1 yr-1 ((1.3 +/- 0.2) x 10-7 Mpc-3 yr-1), which is comparable to optical and X-ray TDE rates. The IR-selected TDE host galaxies do not show a green valley overdensity nor as a preference for quiescent, Balmer strong galaxies, which are both overrepresented in optical and X-ray TDE samples. This IR-selected sample represents a new population of dusty TDEs that have historically been missed by optical and X-ray surveys and helps alleviate tensions between observed and theoretical TDE rates and the so-called missing energy problem.
更多
查看译文
关键词
Supermassive black holes,Accretion,Transient sources,Time domain astronomy,Tidal disruption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要