Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
Recently, high-fidelity scene reconstruction with an optimized 3D Gaussian splat representation has been introduced for novel view synthesis from sparse image sets. Making such representations suitable for applications like network streaming and rendering on low-power devices requires significantly reduced memory consumption as well as improved rendering efficiency. We propose a compressed 3D Gaussian splat representation that utilizes sensitivity-aware vector clustering with quantization-aware training to compress directional colors and Gaussian parameters. The learned codebooks have low bitrates and achieve a compression rate of up to 31× on real-world scenes with only minimal degradation of visual quality. We demonstrate that the compressed splat representation can be efficiently rendered with hardware rasterization on lightweight GPUs at up to 4× higher framerates than reported via an optimized GPU compute pipeline. Extensive experiments across multiple datasets demonstrate the robustness and rendering speed of the proposed approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要