Deciphering the ultra-high plasticity in metal monochalcogenides

Nature Materials(2024)

引用 0|浏览10
暂无评分
摘要
The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX 2 ). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要