Complex-valued artificial hummingbird algorithm for global optimization and short-term wind speed prediction

EXPERT SYSTEMS WITH APPLICATIONS(2024)

引用 0|浏览8
暂无评分
摘要
Environmental pollution and energy depletion have spurred the exploration of renewable energy sources. Wind energy, with its sustainability and eco-friendliness, stands out as a competitive option. However, its effectiveness relies on accurately predicting the fluctuating wind speeds, necessitating ongoing research in this area. In order to improve the accuracy of wind speed prediction, this article presents the first Complex-valued version of the Artificial Hummingbird Algorithm (CAHA), which utilizes the idea of doubles to increase the initial population diversity and enhance the algorithm's performance. Additionally, the article employs the CAHA to optimize the parameters of Artificial Neural Networks (ANNs). This marks the first application of the hybrid model to address the short-term wind speed prediction problem. The experiments begin with a performance evaluation of CAHA using the CEC2022 test set. Then, the CAHA is employed to optimize the parameters of six distinct ANNs to select the ANN model that can produce the best prediction result when synergized with CAHA. The results determine that the hybrid model based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) exhibits the best prediction performance. Furthermore, the performance of CAHA is compared with other classical optimization algorithms in short-term wind speed prediction problems based on ANFIS. Statistical results show that the ANFIS-CAHA model significantly improves the accuracy of short-term wind speed prediction, making it a potent tool for the integration of wind energy into smart grid engineering.
更多
查看译文
关键词
Artificial hummingbird algorithm,Complex -valued encoding,Artificial neural network,Short-term wind speed prediction,Metaheuristic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要