Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface

Nature communications(2024)

引用 0|浏览1
暂无评分
摘要
Temperature sensors are one of the most fundamental sensors and are found in industrial, environmental, and biomedical applications. The traditional approach of reading the resistive response of Positive Temperature Coefficient thermistors at DC hindered their adoption as wide-range temperature sensors. Here, we present a large-area thermistor, based on a flexible and stretchable short carbon fibre incorporated Polydimethylsiloxane composite, enabled by a radio frequency sensing interface. The radio frequency readout overcomes the decades-old sensing range limit of thermistors. The composite exhibits a resistance sensitivity over 1000 °C −1 , while maintaining stability against bending (20,000 cycles) and stretching (1000 cycles). Leveraging its large-area processing, the anisotropic composite is used as a substrate for sub-6 GHz radio frequency components, where the thermistor-based microwave resonators achieve a wide temperature sensing range (30 to 205 °C) compared to reported flexible temperature sensors, and high sensitivity (3.2 MHz/°C) compared to radio frequency temperature sensors. Wireless sensing is demonstrated using a microstrip patch antenna based on a thermistor substrate, and a battery-less radio frequency identification tag. This radio frequency-based sensor readout technique could enable functional materials to be directly integrated in wireless sensing applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要