The spatial and source heterogeneity of agricultural emissions highlight necessity of tailored regional mitigation strategies.

The Science of the total environment(2024)

引用 0|浏览1
暂无评分
摘要
Agriculture contributes considerable greenhouse gas emissions while feed the constantly expanding world population. The challenge of balancing food security with emissions reduction to create a mutually beneficial situation is paramount. However, assessing targeted mitigation potential for agricultural emissions remains challenging, lacking comprehensive sub-national evaluations. Here, we have meticulously compiled the agricultural greenhouse gas emission inventories of China spanning the years 2000 to 2019, employing spatial analysis techniques to identify regional characteristics. We find that the peak of China's agricultural production emissions occurred in 2015 (1.03 × 109 tCO2 equivalent), followed by a valley in 2019 (0.94 tCO2 equivalent), largely attributed to shifts in livestock-related activities. Notably, methane emissions were the most dominant greenhouse gas, the Hunan province emerged as a prominent contributor, livestock raising stood out as a major activity, and enteric fermentation ranked as the primary emission source. There were substantial differences in the emission structure and sources among the provinces. Further spatial analysis showed geographical disparities in both total emissions and per capita emissions. The west-east blocked spatial characteristics of per capita emissions at the Hu Line sides emerged. We advocate that tailored mitigation strategy focusing on specific emission sources and regions can achieve substantial progress with minimal effort.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要