Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection

APPLIED SPECTROSCOPY(2024)

引用 0|浏览3
暂无评分
摘要
We developed a state-of-the-art, high-sensitivity, low-stray-light standoff deep-ultraviolet (DUV) Raman spectrometer for the trace detection of resonance Raman-enhanced chemical species. As an excitation source for Raman measurements, we utilized our recently developed, second-generation, miniaturized, diode-pumped, solid-state neodymium-doped gadolinium orthovanadate (Nd:GdVO4) laser that generates quasi-continuous wave 228 nm light. This 228 nm excitation enhances the Raman intensities of vibrations of NOx groups in explosive molecules, aromatic groups in biological molecules, and various aromatic hydrocarbons. Our DUV Raman spectrograph utilizes a custom DUV f/8 Cassegrain telescope with an similar to 200 mm diameter primary mirror, high-efficiency DUV transmission gratings, custom DUV mirrors, and a custom 228 nm Rayleigh rejection filter. We utilized our new standoff DUV Raman spectrometer to measure high signal-to-noise ratio spectra of similar to 50 mu g/cm(2) drop-cast explosives: ammonium nitrate (AN), trinitrotoluene, pentaerythritol tetranitrate as well as aromatic biological molecules: lysozyme, tryptophan, tyrosine, deoxycytidine monophosphate, deoxyadenosine monophosphate at an similar to 3 m distance within 10-30 s accumulation times. We roughly estimate the average ultraviolet resonance Raman (UVRR) detection limits for the relatively homogeneous drop-cast films of explosives and biological molecules to be similar to 1 mu g/cm(2) when utilizing a continuous raster scanning that averages Raman signal over similar to 1 cm(2) sample area to avoid quick analyte depletion due to ultraviolet (UV) photolysis. We determined 3 m standoff UVRR detection limits for drop-cast AN films and identified factors impacting UVRR detection limits such as analyte photochemistry and analyte morphology. We found a detection limit of similar to 0.5 mu g/cm(2) for drop-cast AN films on glass substrates when the Raman signal is averaged over similar to 0.5 cm(2) of sample surface using a continuous raster scan. For a step raster scan, when the probed sample area is limited to the laser spot size, the detection limit is approximately tenfold higher (similar to 5 mu g/cm(2)) due to the impact of UV photochemistry.
更多
查看译文
关键词
Standoff ultraviolet Raman spectrometer,transmission diffraction grating,standoff Raman detection,Raman trace detection,ultraviolet resonance Raman,UVRR,explosive detection,Raman detection limits,ammonium nitrate,aromatic biological molecules
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要