Exotic Spin-dependent Energy-level Shift Noise Induced by Thermal Motion

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Searching for exotic spin-dependent interactions that beyond the standard model has been of interest for past decades and is crucial for unraveling the mysteries of the universe. Previous laboratory searches primarily focus on searching for either static or modulated energy-level shifts caused by exotic spin-dependent interactions. Here, we introduce a theoretical model based on thermal motion of particles, providing another efficient way to search for exotic spin-dependent interactions. The theoretical model indicates that as the exotic spin-dependent interactions are related with the relative displacements and velocities of atoms, atoms undergoing thermal motion would experience a fluctuating energy-level shift induced by the exotic interactions. Moreover, the resulting exotic energy-level shift noise could be sensed by high-sensitivity instruments. By using the model and taking the high-sensitivity atomic magnetometer as an example, we set the most stringent laboratory experiment constraints on eight different kinds of exotic spin- and velocity-dependent interactions, with five of which at the force range below 1 cm have not been covered previously. Furthermore, this theoretical model can be easily applied in other fields of quantum sensing, such as atomic clocks, atom interferometers and NV-diamond sensors, to further improve the laboratory constraints on exotic spin-dependent interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要