The role of locus coeruleus neuroimmune signaling in the response to social stress in female rats.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览3
暂无评分
摘要
Neuropsychiatric disorders that result from stress exposure, including post-traumatic stress disorder and substance abuse, are highly associated with central inflammation. Our previous work established that females selectively exhibit increased proinflammatory cytokine release within the noradrenergic locus coeruleus (LC) in response to witnessing social stress, which was associated with a hypervigilant phenotype. Thus, neuroimmune activation in the LC may be responsible for the heightened risk of developing mental health disorders following stress in females. Further, ablation of microglia using pharmacological techniques reduces the hypervigilant behavioral response exhibited by females during social stress. Therefore, these studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using DREADDs. We first characterized the use of an AAV-CD68-Gi-DREADD virus targeted to microglia within the LC. While the use of AAVs in preclinical research has been limited by observations regarding poor transfection efficiency in mice, recent data suggest that species specific differences in microglial genetics may render rats more receptive to chemogenetic targeting of microglia using a CD68 promoter. Therefore, clozapine-n-oxide (CNO) was used to activate the microglial expressed hM4Di to inhibit microglial activity during acute exposure to vicarious social defeat (witness stress, WS) in female rats. Neuroimmune activity within the LC, quantified by microglial morphology and cytokine release, was augmented by WS and prevented by chemogenetic microglial inhibition. Following confirmation of DREADD selectivity and efficacy, we utilized this technique to inhibit microglial activity during repeated WS. Subsequently, rats were tested in a marble burying paradigm and exposed to the WS cues and context to measure hypervigilant behaviors. Chemogenetic-mediated inhibition of microglial activity prior to each WS exposure prevented both acute and long-term hypervigilant responses induced by WS across multiple behavioral paradigms. Further, a history of microglial inactivation during WS prevented the heightened LC activity typically observed in response to stress cues. These studies are among the first to use a chemogenetic approach to inhibit microglia within the female brain in vivo and establish LC inflammation as a key mechanism underlying the behavioral and neuronal responses to social stress in females.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要