How redox gradient potentially influences nitrate reduction coupled with sulfur cycling: A new insight into nitrogen cycling in the hyporheic zone of effluent-dominated rivers

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览4
暂无评分
摘要
The coupled N and S cycling in variable redox gradients in the hyporheic zone (HZ) of the rivers receiving effluents from wastewater treatment plants is unclear. Using two representative effluent-dominated rivers as model systems, a metagenome approach was employed to explore the spatiotemporal redox zonation of the HZ and the N/S cycling processes within the system. The results manifested that nitrate reduction represented the fundamental nitrogen pathway in the HZ. Interestingly, DNRA coupled with sulfur reduction, and denitrification coupled with sulfur oxidation were respectively abundant in the oxic and anoxic zone. Lower nitrate concentration (0-2.72 mg-N/L) and more abundant genes involved in denitrification (napB, NarGHI) and sulfur oxidation (sseA, glpE) were detected in the anoxic zone. Contrarily, the nitrate concentration (0.07-4.87 mg-N/L) and the abundance of genes involved in sulfur reduction (ttrB, sudA) and DNRA (nirBD) were observed more abundant in the oxic zone. Therefore, the results verified the oxygen-limited condition did not suppress but rather facilitated the denitrification process in the presence of active S cycling. The high relative abundances of nosZ gene encoding sequence (3-5 % relative to all nitrogen-cycling processes) in both the effluent-discharging area and downstream area highly confirmed that HZ was capable of alleviating the N2O emission in the region. The functional keystone taxa were revealed through co-occurrence network analysis. The structural equation model shows that the genes of N/S cycling were positively impacted by functional keystone taxa, especially the N cycling genes. Functional keystone taxa were proven driven by the redox gradient, demonstrating their positive roles in mediating N/S cycling processes. The promoting effect on nitrate reduction coupled with sulfur cycling was clarified when redox conditions oscillated, providing a new perspective on mitigating nitrogen pollution and greenhouse gas emissions in effluent-receiving rivers.
更多
查看译文
关键词
Redox gradient,Metagenomics,Effluent -dominated river,Hyporheic zone,N/S coupling cycle,Keystone taxa
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要