Magnetic Co-doped 1D/2D structured -Fe2O3/MoS2 effectively activated peroxymonosulfate for efficient abatement of bisphenol A via both radical and non-radical pathways

FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING(2024)

引用 0|浏览1
暂无评分
摘要
Iron-based catalysts have been widely used to treat refractory organic pollutants in wastewater. In this paper, magnetic Co-gamma-Fe(2)O(3 )was synthesized by a facile tartaric acid-assisted hydrothermal method, and Co-gamma-Fe2O3/MoS2 nanocomposite catalyst was obtained via in situ growth of MoS2 nanosheets on Co-gamma-Fe2O3 nanoparticles. The nanocomposite catalysts were used to decompose bisphenol A (BPA) by activating peroxymonosulfate (PMS). It was shown that only 0.15 g/L catalyst and 0.5 mmol/L PMS degraded 10 mg/L of BPA (99.3% within 10 min) in the pH range of 3-9. PMS was activated due to redox cycling among the pairs Co(III)/Co(II), Fe(III)/Fe(II), and Mo(VI)/Mo(IV). Quenching experiments and electron paramagnetic resonance spectroscopy demonstrated that both radical and non-radical pathways were involved in BPA degradation, in which active radical sulfate radical and non-radical singlet oxygen were the main reactive oxygen species. Ten intermediates were identified by liquid chromatography-coupled mass spectrometry, and three possible BPA degradation pathways were proposed. The toxicity of several degradation intermediates was lower, and Co-gamma-Fe2O3/MoS2 exhibited excellent reusability and could be magnetically recovered.
更多
查看译文
关键词
Magnetic Co-gamma-Fe2O3/MoS2,Hydrothermal method,Bisphenol A,Degradation pathways,Toxicity analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要