Freezing Halide Segregation Under Intense Light for Photostable Perovskite/Silicon Tandem Solar Cells

ADVANCED ENERGY MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
Photo-induced halide segregation in wide-bandgap (WBG) perovskite leads to poor stability and limits its application in high-efficiency tandem solar cells. Here, a simple solution strategy to achieve photostable WBG perovskite solar cells (PSCs) with bandgap of approximate to 1.67 eV by ionic coupling potassium sorbate with defects at the buried perovskite interface is reported. Moreover, the ionic coupled potassium sorbate (ICPS) enables to control the formation of N-methyl formamidinium ions that can selectively passivate the perovskite defects at grain boundaries. As a result, the photo-induced halide segregation in the target perovskite films is frozen under intense light. The target single-junction WBG PSC achieves a record efficiency of 22.00% with an open-circuit voltage (V-OC) of 1.272 V and photostability of less than 2% decay over 2000 h of operation. Perovskite/Silicon tandem solar cells are also fabricated that achieve an efficiency of 30.72% (certified 30.09% @1.087 cm(2)), which is the highest efficiency reported to date with a tunneling oxide passivating contact (TOPCon) c-Si substrate. The encapsulated tandem device can maintain 97% of its initial efficiency after 1000 h of operation.
更多
查看译文
关键词
mixed-halide wide-bandgap perovskites,perovskite/silicon tandem solar cells,photostability,V-OC loss
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要