Identifying Critical Links in Urban Transportation Networks Based on Spatio-Temporal Dependency Learning

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS(2023)

引用 0|浏览5
暂无评分
摘要
The urban transportation network is crucial for societal development, but it is prone to failures like congestion caused by accidents or disasters. In particular, often network-wide failure is the result of a series of cascading failures originating from a small set of individual links. To prevent such failures, it is essential to identify these critical links and take early action. However, most existing approaches in the literature for evaluating the importance of each link rely on manually designed metrics (e.g., the Network Robustness Index). These methods are time-consuming and not suitable for large-scale urban networks. Additionally, these metrics fail to accurately capture the dynamic traffic interactions influenced by vehicle movement. In this paper, we present a novel method for identifying critical links by learning effective traffic interaction representation (the spatio-temporal dependencies) among roads. By representing the network as an un-directed graph and abstracting the road links as the nodes, we introduce a temporal graph attention model to capture spatial and temporal dependence between nodes. This model combines a graph attention network and a long short-term memory neural network and produces an attention matrix, which represents traffic interactions among links. Furthermore, we propose a traffic influence propagation model to evaluate the influence of each link for the entire road network based on the traffic interaction representation. We rank the importance of links based on their influence and then identify the critical links. A real-world case study in the city of Hangzhou, China is conducted to test our method and we use the network efficiency ratio to quantify its performance. The results suggest that our method can effectively identify the critical links at different periods.
更多
查看译文
关键词
Critical links,graph neural networks,LSTM,network propagation dynamics,urban transportation network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要