n-3 polyunsaturated fatty acids alleviate the progression of obesity-related osteoarthritis and protect cartilage through inhibiting the HMGB1-RAGE/TLR4 signaling pathway.

Tao Xiong, Shiqi Huang, Xinjuan Wang,Yu Shi,Jianyi He,Ye Yuan, Ruiqi Wang,Hailun Gu,Li Liu

International immunopharmacology(2024)

引用 0|浏览1
暂无评分
摘要
Osteoarthritis (OA) is a common joint degenerative disease. There is currently no cure for OA. Dietary fatty acids have potential value in the prevention and treatment of OA. n-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory effects, but their anti-OA mechanism remains unclear. High-mobility group box 1 (HMGB1) promotes inflammation and participates the pathogenesis of OA. The purpose of this study was to investigate the protective effect of n-3 PUFAs on cartilage and whether n-3 PUFAs could exert an anti-OA effect through inhibiting HMGB1-RAGE/TLR4 signaling pathway. We established an obesity-related post-traumatic OA mice model and an in vitro study was conducted to explore the regulatory mechanism of n-3 PUFAs on HMGB1 and its signal pathway against OA. We found that diet rich in n-3 PUFAs alleviated OA-like lesions of articular cartilage with the decrease of HMGB1-RAGE/TLR4 signaling protein in mice. In SW1353 cells, DHA significantly reduced the expression of HMGB1-RAGE/TLR4 signaling protein which was up-regulated by IL-1β stimulation. HMGB1 overexpression reversed the inhibitory effect of DHA on HMGB1-RAGE/TLR4 signaling pathway. The activation of SIRT1 may participate the inhibitory effect of DHA on HMGB1-RAGE/TLR4 signaling pathway. In conclusion, n-3 PUFAs could attenuate the progression of obesity-related OA and exert protective effect on cartilage by inhibiting HMGB1-RAGE/TLR4 signaling pathway, which may be associated with the activation of SIRT1. Dietary n-3 PUFAs supplements can be considered as a potential therapeutic substance for OA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要