Low-Viscous, Dilute Phase Adhesive from Dense Polyphenolic Coacervates of Poly(vinyl alcohol) and Tannic acid

Helen H. Ju,Eunu Kim, Han-Yeol Yang,Yu Ri Nam,Jingxian Wu,Haeshin Lee

ACS OMEGA(2023)

引用 0|浏览2
暂无评分
摘要
This study explores a polyphenolic coacervate, named VATA, formed by poly-(vinyl alcohol) (PVA) and tannic acid (TA). Distinct from conventional studies that have focused on the bottom, dense phase of coacervates, this research emphasizes the top, dilute phase, low-viscous coacervate liquid termed liquid-VATA (l-VATA). Due to TA's capability of intermolecular association as well as adhesiveness, phenomena not typically observed in the upper dilute phase of standard polyelectrolyte-based coacervates are revealed. At first glance, the dilute phase l-VATA coacervate resembles a water-like, low-viscous mixture solution of PVA, TA, and PVA/TA complexes. However, analysis shows that nearly all of the TA molecules associate with PVA chains, forming PVA/TA complexes. Furthermore, supraparticular association was observed between PVA/TA complex nanoparticles upon applying external shear force. A broad survey of shear rate and strain showed that the solution exhibited sequential shear-thickening, followed by shear-thinning behavior. The water-like, low viscosity of l-VATA unexpectedly reveals robust adhesiveness and thus able to lift an entire mouse using just a single human hair strand. Even in cases of failure, no interfacial failure was detected between mouse and human hair. In addition to enabling hair-to-hair bonding, our study also showcases the efficacy of l-VATA in facilitating hair-to-skin adhesion. The results illustrate how the lower viscosity of l-VATA can be exploited for a wide range of industrial and cosmetic applications, allowing the formulation of thin, uniform adhesive layers, something unachievable with the dense, viscous VATA glue. Thus, this study highlights the importance of investigating the top dilute phase of coacervates, shedding light on an area often underestimated compared to the bottom dense phase reported in prevalent coacervate studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要