Generation of Flying Logical Qubits using Generalized Photon Subtraction with Adaptive Gaussian Operations

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
The generation of a logical qubit called the Gottesman-Kitaev-Preskill qubit in an optical traveling wave is a major challenge for realizing large-scale universal fault-tolerant optical quantum computers. Recently, probabilistic generation of elementary GKP qubits has been demonstrated using photon number measurements and homodyne measurements. However, the generation rate is only a few Hz, and it will be difficult to generate fault-tolerant GKP qubits at a practical rate unless success probability is significantly improved. Here, we propose a method to efficiently synthesize GKP qubits from several quantum states by adaptive Gaussian operations. In the initial state preparation that utilizes photon number measurements, an adaptive operation allows any measurement outcome above a certain threshold to be considered as a success. This threshold is lowered by utilizing the generalized photon subtraction method. The initial states are synthesized into a GKP qubit by homodyne measurements and a subsequent adaptive operation. As a result, the single-shot success probability of generating fault-tolerant GKP qubits in a realistic scale system exceeds 10%, which is one million times better than previous methods. This proposal will become a powerful tool for advancing optical quantum computers from the proof-of-principle stage to practical application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要