Influence of temperature, doping, and amorphization on the electronic structure and magnetic damping of iron

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Hybrid magnonic quantum systems have drawn increased attention in recent years for coherent quantum information processing, but too large magnetic damping is a persistent concern when metallic magnets are used. Their intrinsic damping is largely determined by electron-magnon scattering induced by spin-orbit interactions. In the low scattering limit, damping is dominated by intra-band electronic transitions, which has been theoretically shown to be proportional to the electronic density of states at the Fermi level. In this work, we focus on body-centered-cubic iron as a paradigmatic ferromagnetic material. We comprehensively study its electronic structure using first-principles density functional theory simulations and account for finite lattice temperature, boron (B) doping, and structure amorphization. Our results indicate that temperature induced atomic disorder and amorphous atomic geometries only have a minor influence. Instead, boron doping noticeably decreases the density of states near the Fermi level with an optimal doping level of 6.25 for different atomic geometries and report that the highest reduction correlates with a large magnetization of the material. This may suggest materials growth under external magnetic fields as a route to explore in experiment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要