Exploiting a metabolic vulnerability in brain tumour stem cells using a brain-penetrant drug with safe profile

Audrey Burban, Cloe Tessier, Mathis Pinglaut,Joris Guyon,Johanna Galvis,Benjamin Dartigues, Maxime Toujas,Mathieu Larroquette,H Artee Luchman,Samuel Weiss,Nathalie Nicot, Barbara Klink, Macha Nikolski,Lucie Brisson, Thomas Mathivet, Andreas Bikfalvi,Thomas Daubon, Ahmad Sharanek

biorxiv(2024)

引用 0|浏览2
暂无评分
摘要
Glioblastoma (GB) remains one of the most treatment refractory and fatal tumour in humans. GB contains a population of self-renewing stem cells, the brain tumour stem cells (BTSC) that are highly resistant to therapy and are at the origin of tumour relapse. Here, we report, for the first time, that mubritinib potently impairs stemness and growth of patient-derived BTSCs harboring different oncogenic mutations. Mechanistically, by employing bioenergetic assays and rescue experiments, we provide compelling evidence that mubritinib acts on complex I of the electron transport chain to impair BTSC stemness pathways, self-renewal and proliferation. Global gene expression profiling revealed that mubritinib alters the proliferative, neural-progenitor-like, and the cell-cycling state signatures. We employed in vivo pharmacokinetic assays to establish that mubritinib crosses the blood-brain barrier. Using preclinical models of patient-derived and syngeneic murine orthotopic xenografts, we demonstrated that mubritinib delays GB tumourigenesis, and expands lifespan of animals. Interestingly, its combination with radiotherapy offers survival advantage to animals. Strikingly, thorough toxicological and behavioral studies in mice revealed that mubritinib does not induce any damage to normal cells and has a well-tolerated and safe profile. Our work warrants further exploration of this drug in in-human clinical trials for better management of GB tumours. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要