Single-Molecule Force Spectroscopy of Toehold-Mediated Strand Displacement

biorxiv(2024)

引用 0|浏览3
暂无评分
摘要
Toehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and is the foundation for a wide range of DNA or RNA-based reaction circuits. Previous studies have typically relied on bulk fluorescence measurements to investigate the kinetics of TMSD, which only provide effective, bulk-averaged reaction rates and do not resolve the process on the level of individual molecules or even base pairs. In this work, we addressed this limitation by exploring the dynamics of strand displacement processes at the single-molecule level using single-molecule force spectroscopy (SMFS) with an optical trap supported by state-of-the-art coarse-grained simulations. By probing the ends of the hairpin of a toehold structure, we can trigger and observe TMSD in real time with microsecond and nanometer resolution. Using a microfluidic assay where we expose the hairpin to a solution of trigger strands, we find that under load, TMSD proceeds very rapidly, with single step times of 1 μs. Introducing mismatches into the invader sequence allows us to tune stability such that invasion and re-invasion occur in equilibrium, even under load. This allows us to study thousands of invasion/re-invasion events on a single molecule and analyze the kinetics of the invasion process. Extrapolating our findings to zero load, we find single step times for DNA invading DNA four times faster than for RNA invading RNA. Moreover, we used force to study the kinetics of DNA invading RNA, a process that in the absence of force would rarely occur. Our results reveal the importance of sequence effects for the TMSD process and have importance for a wide range of applications in nucleic acid nanotechnology and synthetic biology. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要