Interface Dynamics of Strongly interacting Binary Superfluids

Yu-Ping An,Li Li, Chuan-Yin Xia,Hua-Bi Zeng

Physical Review D(2024)

引用 0|浏览0
暂无评分
摘要
Understanding the interface dynamics in non-equilibrium quantum systems remains a challenge. We study the interface dynamics of strongly coupled immiscible binary superfluids by using holographic duality. The full nonlinear evolution of the binary superfluids with a relative velocity shows rich nonlinear patterns toward quantum turbulence, which is reminiscent of the quantum Kelvin-Helmholtz instability. The wave number of the fast growing modes k_0 extracted from the interface pattern yields a non-monotonic dependence of the relative velocity, independent of the temperature and interaction. The value of k_0 first increases with the velocity difference and then decreases, which stands in sharp contrast to the results of mean-field theory described by the Gross-Pitaevskii equation and is confirmed by using the linear analyses on top of the stationary configuration. We uncover that the critical velocity associated with the maximum correspond to the case when the mean separation of vortices generated by interface instabilities becomes comparable to the vortex size, which could be a universal physical mechanism at strongly interacting superfluids and is directly testable in laboratory experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要