Chrome Extension
WeChat Mini Program
Use on ChatGLM

Comprehensive Impacts of Different Integrated Rice-Animal Co-Culture Systems on Rice Yield, Nitrogen Fertilizer Partial Factor Productivity and Nitrogen Losses: A Global Meta-Analysis.

Binpeng Chen,Lijin Guo,Jichao Tang, Yanshi Li,Chengfang Li

Science of the total environment(2024)

Cited 0|Views11
No score
Abstract
Integrated rice-animal co-culture (IRAC) is an ecological agricultural system combining rice cultivation with animal farming, which holds significant implications for food security and agriculture sustainable development. However, the comprehensive impacts of the co-culture on rice yield, nitrogen (N) losses, and N fertilizer partial factor productivity (NPFP) remain elusive and may vary under different environmental conditions and N management. Here, we conducted a meta-analysis of data from various IRAC systems on a global scale, including 371, 298, and 115 sets of data for rice yield, NPFP, and N losses, respectively. The results showed that IRAC could significantly increase rice yield (by 3.47 %) and NPFP (by 4.26 %), and reduce N2O emissions (by 16.69 %), NH3 volatilization (by 11.03 %), N runoff (by 17.72 %), and N leaching (by 19.10 %). Furthermore, there were significant differences in rice yield, NPFP, and N loss among different IRAC systems, which may be ascribed to variations in regional climate, soil variables, and N fertilizer management practices. The effect sizes of rice yield and NPFP were notably correlated with the rate and frequency of N application and the soil clay content. Moreover, a higher amount of precipitation corresponded to a larger effect size on rice NPFP. N2O emissions were closely associated with mean annual air temperature, annual precipitation, N application frequency, soil pH level, soil organic matter content, soil clay content, and soil bulk density. However, NH3 volatilization, N runoff, and N leaching exhibited no correlation with either the environmental conditions or the N management. Multivariate regression analysis further demonstrated that the soil clay content and N application rate are pivotal in predicting the effect sizes of rice yield, NPFP, and N2O emissions under IRAC. Specifically, IRAC with a low N application rate in soils with a high clay content could augment the effect size to increase rice NPFP and yield and reduce N2O emissions. In conclusion, IRAC offers a potent strategy to optimize rice yield and NPFP as well as mitigate N losses.
More
Translated text
Key words
Nitrogen losses,Integrated rice-animals co-culture,Nitrous oxide emissions,Nitrogen use efficiency,Yield
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined