谷歌浏览器插件
订阅小程序
在清言上使用

Single and Binary Nickel, Copper, and Zinc-Based Nanosized Oxides As Anode Materials in Lithium-Ion Batteries

Journal of materials science Materials in electronics(2024)

引用 0|浏览5
暂无评分
摘要
The demand for portable power sources with higher energy density and longer lifespan has prompted researchers to focus on developing better electrode materials for lithium-ion batteries (LIBs). Metal oxide nanoparticles have potential due to their low cost, high surface-area-to-volume ratio, strong reactivity, excellent size distribution, high theoretical capacities, and eco-friendly synthesis methods. However, there is still room for improvement in capacity retention and rate performance. To cope with this entail, the cycle performance of LIBs has been initially investigated utilizing single metal oxide anode materials including NiO, CuO, and ZnO nanostructures. Subsequently, binary oxides of Ni–Cu, Ni–Zn, and Cu–Zn have been synthesized to examine whether the binary structures boost the battery performance. NiCuO is the optimum anode material combining the benefits of NiO with the highest initial discharge capacity of 691 mAh g ^-1 and the highest retention rate of CuO (49
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要