Cardiac Digital Twin Pipeline for Virtual Therapy Evaluation

CoRR(2024)

引用 0|浏览23
暂无评分
摘要
Cardiac digital twins are computational tools capturing key functional and anatomical characteristics of patient hearts for investigating disease phenotypes and predicting responses to therapy. When paired with large-scale computational resources and large clinical datasets, digital twin technology can enable virtual clinical trials on virtual cohorts to fast-track therapy development. Here, we present an automated pipeline for personalising ventricular anatomy and electrophysiological function based on routinely acquired cardiac magnetic resonance (CMR) imaging data and the standard 12-lead electrocardiogram (ECG). Using CMR-based anatomical models, a sequential Monte-Carlo approximate Bayesian computational inference method is extended to infer electrical activation and repolarisation characteristics from the ECG. Fast simulations are conducted with a reaction-Eikonal model, including the Purkinje network and biophysically-detailed subcellular ionic current dynamics for repolarisation. For each patient, parameter uncertainty is represented by inferring a population of ventricular models rather than a single one, which means that parameter uncertainty can be propagated to therapy evaluation. Furthermore, we have developed techniques for translating from reaction-Eikonal to monodomain simulations, which allows more realistic simulations of cardiac electrophysiology. The pipeline is demonstrated in a healthy female subject, where our inferred reaction-Eikonal models reproduced the patient's ECG with a Pearson's correlation coefficient of 0.93, and the translated monodomain simulations have a correlation coefficient of 0.89. We then apply the effect of Dofetilide to the monodomain population of models for this subject and show dose-dependent QT and T-peak to T-end prolongations that are in keeping with large population drug response data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要