Chrome Extension
WeChat Mini Program
Use on ChatGLM

Size Modulation of Conjugated Polymer Nanoparticles for Improved NIR-II Fluorescence Imaging and Photothermal Therapy.

ACS Applied Materials &amp Interfaces(2024)

Cited 0|Views13
No score
Abstract
Near-infrared-II fluorescence imaging (NIR-II FI) has become a powerful imaging technique for disease diagnosis owing to its superiorities, including high sensitivity, high spatial resolution, deep imaging depth, and low background interference. Despite the widespread application of conjugated polymer nanoparticles (CPNs) for NIR-II FI, most of the developed CPNs have quite low NIR-II fluorescence quantum yields based on the energy gap law, which makes high-sensitivity and high-resolution imaging toward deep lesions still a huge challenge. This work proposes a nanoengineering strategy to modulate the size of CPNs aimed at optimizing their NIR-II fluorescence performance for improved NIR-II phototheranostics. By adjusting the initial concentration of the synthesized conjugated polymer, a series of CPNs with different particle sizes are successfully prepared via a nanoprecipitation approach. Results show that the NIR-II fluorescence brightness of CPNs gradually amplifies with decreasing particle size, and the optimal CPNs, NP0.2, demonstrate up to a 2.05-fold fluorescence enhancement compared with the counterpart nanoparticles. With the merits of reliable biocompatibility, high photostability, and efficient light-heat conversion, the optimal NP0.2 has been successfully employed for NIR-II FI-guided photothermal therapy both in vitro and in vivo. Our work highlights an effective strategy of nanoengineering to improve the NIR-II performance of CPNs, advancing the development of NIR-II FI in life sciences.
More
Translated text
Key words
conjugated polymer nanoparticles,nanoengineering,near-infrared-II fluorescence imaging,photothermaltherapy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined