Non-equilibrium Theory of Arrested Spinodal Decomposition

arXiv (Cornell University)(2015)

引用 0|浏览0
暂无评分
摘要
The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermo- dynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass tran- sition and from above by the spinodal dynamic arrest line we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the for- mation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.
更多
查看译文
关键词
non-equilibrium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要