Controlled Self-Assembly of Natural Polyphenols Driven by Multiple Molecular Interactions.

ChemPlusChem(2024)

引用 0|浏览1
暂无评分
摘要
Nature has exhibited a high degree of control over the structures and functions. Supramolecules have been utilized to mimic the subtle assembly in nature. However, sophisticated synthesis of molecular skeletons or programmable design of the driving forces raises great challenges in fabricating high-level superstructures in a controlled manner. Natural polyphenols show great promises as building blocks for a diverse of assemblies with controlled structures and functionalities. The intrinsically embedded phenolic groups (i. e., catechol and galloyl groups) are readily forming multiple molecular interactions, including coordination, hydrogen bonding, and π-π interactions with various materials of inorganic particles, organic compounds, synthetic polymers, and biomacromolecules, providing the self-assembled structures or nanocoating on surfaces. Subsequent assembly occurred by further bonding of polyphenols to construct supraparticles. To gain control over the self-assembly, the key lies in the interplay among the molecular interactions with one or two being dominant. In this Perspective, we introduce the representative polyphenol-based assemblies and their derived supraparticles to exhibit the effective harness of the controlled self-assembly by polyphenols.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要