Learning the cost-to-go for mixed-integer nonlinear model predictive control

CoRR(2024)

引用 0|浏览6
暂无评分
摘要
Application of nonlinear model predictive control (NMPC) to problems with hybrid dynamical systems, disjoint constraints, or discrete controls often results in mixed-integer formulations with both continuous and discrete decision variables. However, solving mixed-integer nonlinear programming problems (MINLP) in real-time is challenging, which can be a limiting factor in many applications. To address the computational complexity of solving mixed integer nonlinear model predictive control problem in real-time, this paper proposes an approximate mixed integer NMPC formulation based on value function approximation. Leveraging Bellman's principle of optimality, the key idea here is to divide the prediction horizon into two parts, where the optimal value function of the latter part of the prediction horizon is approximated offline using expert demonstrations. Doing so allows us to solve the MINMPC problem with a considerably shorter prediction horizon online, thereby reducing the online computation cost. The paper uses an inverted pendulum example with discrete controls to illustrate this approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要