Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fast-Charging, Binder-Free Lithium Battery Cathodes Enabled Via Multidimensional Conductive Networks.

Nano letters(2024)

Cited 0|Views13
No score
Abstract
To meet the growing demands in both energy and power densities of lithium ion batteries, electrode structures must be capable of facile electron and ion transport while minimizing the content of electrochemically inactive components. Herein, binder-free LiFePO4 (LFP) cathodes are fabricated with a multidimensional conductive architecture that allows for fast-charging capability, reaching a specific capacity of 94 mAh g-1 at 4 C. Such multidimensional networks consist of active material particles wrapped by 1D single-walled carbon nanotubes (CNTs) and bound together using 2D MXene (Ti3C2Tx) nanosheets. The CNTs form a porous coating layer and improve local electron transport across the LFP surface, while the Ti3C2Tx nanosheets provide simultaneously high electrode integrity and conductive pathways through the bulk of the electrode. This work highlights the ability of multidimensional conductive fillers to realize simultaneously superior electrochemical and mechanical properties, providing useful insights into future fast-charging electrode designs for scalable electrochemical systems.
More
Translated text
Key words
multidimensional network,electrical percolation,interfacial contact,fastcharging,energystorage,lithium-ion batteries
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined