Tracer diffusion beyond Gaussian behavior: explicit results for general single-file systems

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Single-file systems, in which particles diffuse in narrow channels while not overtaking each other, is a fundamental model for the tracer subdiffusion observed in confined geometries, such as in zeolites or carbon nanotubes. Twenty years ago, the mean squared displacement of a tracer was determined at large times, for any diffusive single-file system. Since then, for a general single-file system, even the determination of the fourth cumulant, which probes the deviation from Gaussianity, has remained an open question. Here, we fill this gap and provide an explicit formula for the fourth cumulant of an arbitrary single-file system. Our approach also allows us to quantify the perturbation induced by the tracer on its environment, encoded in the correlation profiles. These explicit results constitute a first step towards obtaining a closed equation for the correlation profiles for arbitrary single-file systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要