Quantum error mitigation for Fourier moment computation

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Hamiltonian moments in Fourier space - expectation values of the unitary evolution operator under a Hamiltonian at different times - provide a convenient framework to understand quantum systems. They offer insights into the energy distribution, higher-order dynamics, response functions, correlation information and physical properties. This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware. The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates. These techniques, combined with purification and error suppression methods, effectively address quantum hardware decoherence. The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude. Moreover, quantum circuits involving up to 266 CNOT gates over five qubits demonstrate high accuracy under these methodologies when run on IBM superconducting quantum devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要