Hopping frustration-induced flat band and strange metallicity in a kagome metal

Nature Physics(2024)

引用 0|浏览10
暂无评分
摘要
The introduction of localized electronic states into a metal can alter its physical properties, for example enabling exotic metal physics including heavy fermion and strange metal behaviour. A common source of localized states in such systems are partially filled 4 f and 5 f shells because of the inherently compact nature of those orbitals. The interaction of electrons in these orbitals with the conduction sea is well described by the Kondo framework. However, there have also been observations of Kondo-like behaviour in 3 d transition metal oxides and in 4 d- and 5 d -containing van der Waals heterostructures. This calls for a broader consideration of the physical requirements for Kondo systems. Here we show transport and thermodynamic hallmarks of heavy fermion and strange metal behaviour that arise in the kagome metal Ni 3 In, wherein the source of localized states is destructive interference-induced band flattening of partially filled Ni 3 d states. With magnetic field and pressure tuning, we also find evidence that the system is proximate to quantum criticality, extending the analogy to f -electron Kondo lattices. These observations highlight the role of hopping frustration in metallic systems as a potential source for strong correlations. Additionally, this suggests a lattice-driven approach to realizing correlated metals with non-trivial band topology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要