Separation of photoionization and measurement-induced delays

SCIENCE ADVANCES(2024)

引用 0|浏览4
暂无评分
摘要
Photoionization of matter is one of the fastest electronic processes in nature. Experimental measurements of photoionization dynamics have become possible through attosecond metrology. However, all experiments reported to date contain a so-far unavoidable measurement-induced contribution, known as continuum-continuum (CC) or Coulomb-laser-coupling delay. In traditional attosecond metrology, this contribution is nonadditive for most systems and nontrivial to calculate. Here, we introduce the concept of mirror symmetry-broken attosecond interferometry, which enables the direct and separate measurement of both the native one-photon ionization delays and the CC delays. Our technique solves the longstanding challenge of experimentally isolating these two contributions. This advance opens the door to the next generation of accurate measurements and precision tests that will set standards for benchmarking the accuracy of electronic structure and electron-dynamics methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要