Stability of Ni-Fe-Layered Double Hydroxide Under Long-Term Operation in AEM Water Electrolysis

SMALL(2024)

引用 0|浏览1
暂无评分
摘要
Anion exchange membrane water electrolysis (AEMWE) is an attractive method for green hydrogen production. It allows the use of non-platinum group metal catalysts and can achieve performance comparable to proton exchange membrane water electrolyzers due to recent technological advances. While current systems already show high performances with available materials, research gaps remain in understanding electrode durability and degradation behavior. In this study, the performance and degradation tracking of a Ni3Fe-LDH-based single-cell is implemented and investigated through the correlation of electrochemical data using chemical and physical characterization methods. A performance stability of 1000 h, with a degradation rate of 84 mu V h-1 at 1 A cm-2 is achieved, presenting the Ni3Fe-LDH-based cell as a stable and cost-attractive AEMWE system. The results show that the conductivity of the formed Ni-Fe-phase is one key to obtaining high electrolyzer performance and that, despite Fe leaching, change in anion-conducting binder compound, and morphological changes inside the catalyst bulk, the Ni3Fe-LDH-based single-cells demonstrate high performance and durability. The work reveals the importance of longer stability tests and presents a holistic approach of electrochemical tracking and post-mortem analysis that offers a guideline for investigating electrode degradation behavior over extended measurement periods. Transitioning industrial processes toward renewable energy is vital for decarbonization. Green hydrogen, generated via anion exchange membrane water electrolysis (AEMWE) offers cost-effective, efficient hydrogen production. While recent research has improved AEMWE components, long-term durability and comprehensive electrode studies are lacking. This study investigates a Ni3Fe-LDH-based single-cell's 1000 h operation, tracking anode degradation, and establishing correlations with overall cell stability.image
更多
查看译文
关键词
anion exchange membrane water electrolysis,catalyst layers,electrode degradation studies,electrolyzer durability,NiFe LDH catalysts,post-mortem analysis,water electrolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要