Unravelled proteins form blobs during translocation across nanopores

biorxiv(2024)

引用 0|浏览3
暂无评分
摘要
The electroosmotic-driven transport of unravelled proteins across nanopores is an important biological process that is now under investigation for the rapid analysis and sequencing of proteins. For this approach to work, however, it is crucial that the polymer is threaded in single file. Here we found that, contrary to the electrophoretic transport of charged polymers such as DNA, during polypeptide translocation blob-like structures typically form inside nanopores. Comparisons between different nanopore sizes, shapes and surface chemistries showed that under electroosmotic-dominated regimes single-file transport of polypeptides can be achieved using nanopores that simultaneously have an entry and an internal diameter that is smaller than the persistence length of the polymer, have a uniform non-sticky ( i . e . non-aromatic) nanopore inner surface, and using moderate translocation velocities. ### Competing Interest Statement The authors declare no competing interests. G.M. is a founder, director and shareholder of Portal Biotech Limited, a company engaged in the development of nanopore technologies. This work was not supported by Portal Biotech Limited.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要