谷歌浏览器插件
订阅小程序
在清言上使用

Piezoelectric-enhanced N-Tio2/batio3/p-tio2 Heterojunction for Highly Efficient Photoelectrocatalysis

GREEN ENERGY & ENVIRONMENT(2024)

引用 1|浏览9
暂无评分
摘要
Charge separation is critical for achieving efficient solar-to-hydrogen conversion, whereas piezoelectric-enhanced photoelectrochemical (PEC) systems can effectively modulate band bending and charge migration. Herein, we design an n-TiO2/BaTiO3/p-TiO2 (TBTm) heterojunction in which the piezoelectric BaTiO3 layer is sandwiched between n-TiO2 and p-TiO2. The built-in electric field of TBTm can provide a strong driving force to accelerate carrier separation and prolong carrier lifetime. Consequently, the TBT3 achieves a prominent photocurrent density, as high as 2.13 mA cm(-2) at 1.23 V versus reversible hydrogen electrode (RHE), which is 2.4- and 1.5-times higher than TiO2 and TiO2-BaTiO3 heterojunction, respectively. Driven by mechanical deformation, the induced dipole polarization can further regulate built-in electric fields, and the piezoelectric photocurrent density of TBT3-800 is 2.84 times higher than TiO2 at 1.23 V vs. RHE due to the construction of piezoelectric-heterostructures. This work provides a piezoelectric polarization strategy for modulating the built-in electric field of heterojunction for PEC system. (c) 2023 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Photoelectrochemical,Piezoelectric polarization,Heterojunction,Charge separation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要