谷歌浏览器插件
订阅小程序
在清言上使用

Thermal Conductivity and Orientation Structure of Liquid Crystalline Epoxy Thermosets Prepared by Latent Curing Catalyst

Miyuki Harada, Takuya Matsumoto

Crystals(2023)

引用 0|浏览7
暂无评分
摘要
Improvements in the performance of electronic devices necessitate the development of polymer materials with heat dissipation properties. Liquid crystalline (LC) epoxies have attracted attention because of the orientation of their polymer network chains and their resultant high thermal conductivity. In this study, a diglycidyl ether of 1-methyl-3-(4-phenylcyclohex-1-enyl)benzene was successfully synthesized as an LC epoxy and the LC temperature range was evaluated via differential scanning calorimeter (DSC). The synthesized LC epoxy was cured with m-phenylenediamine (m-PDA) as an amine-type curing agent and 1-(2-cyanoethyl)-2-undecylimidazole (CEUI) as a latent curing catalyst, respectively. The LC phase structure and domain size of the resultant epoxy thermosets were analyzed through X-ray diffraction (XRD) and polarized optical microscopy (POM). High thermal conductivity was observed in the m-PDA system (0.31 W/(m·K)) compared to the CEUI system (0.27 W/(m·K)). On the other hand, in composites loaded with 55 vol% Al2O3 particles as a thermal conductive filler, the CEUI composites showed a higher thermal conductivity value of 2.47 W/(m·K) than the m-PDA composites (1.70 W/(m·K)). This difference was attributed to the LC orientation of the epoxy matrix, induced by the hydroxyl groups on the alumina surface and the latent curing reaction.
更多
查看译文
关键词
epoxy,thermosets,crosslinking,mechanical properties,thermal property,liquid crystals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要