Effect of Friction Stir Welding and Tempering on the Microstructure and Strength of a Tempformed Low-Alloy Steel

METALS(2024)

引用 0|浏览0
暂无评分
摘要
The microstructure developed in a low-alloy steel during friction stir welding and post-weld tempering was studied. The quenched steel samples were subjected to tempering at 650 degrees C for 1 h, followed by warm rolling to a total strain of 1.5 at the same temperature. The processed steel samples were characterized by an ultrafine-grained microstructure of the lamellar type with a transverse grain size of 360 nm and exhibited an yield strength of about 1200 MPa and a total elongation of 13%. Then, the steel plates were joined by friction stir welding. The yield strength of the weld joint was about 1170 MPa, although the total elongation decreased to 1.5%. The martensite microstructure, with a high-angle grain boundary spacing of about 800 nm, was developed in the stir zone. This martensite in the stir zone originated from the ultrafine-grained prior austenite, resulting in an almost two-fold increase in hardness as compared to the base material. Tempering of the welded sample at 650 degrees C for 1 h resulted in a decrease in the hardness of the weld joint to the level of the base material. Nevertheless, the fracture of the welded and tempered sample occurred in the base material. The yield strength of the welded sample after tempering was 930 MPa, with a total elongation of 13%.
更多
查看译文
关键词
high-strength low-alloy steel,tempforming,friction stir welding,strength and plasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要