Density Dependent Gauge Field Inducing Emergent Su-Schrieffer-Heeger Physics, Solitons, and Condensates in a Discrete Nonlinear Schrödinger Equation.

Physical review letters(2024)

引用 0|浏览0
暂无评分
摘要
We investigate a discrete nonlinear Schrödinger equation with dynamical, density-difference-dependent gauge fields. We find a ground-state transition from a plane wave condensate to a localized soliton state as the gauge coupling is varied. Interestingly we find a regime in which the condensate and soliton are both stable. We identify an emergent chiral symmetry, which leads to the existence of a symmetry-protected zero-energy edge mode. The emergent chiral symmetry relates low and high energy solitons. These states indicate that the interaction acts both repulsively and attractively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要