Deciphering the potential role of quorum quenching in efficient aerobic denitrification driven by a synthetic microbial community

WATER RESEARCH(2024)

引用 0|浏览2
暂无评分
摘要
Low efficiency is one of the main challenges for the application of aerobic denitrification technology in wastewater treatment. To improve denitrification efficiency, a synthetic microbial community (SMC) composed of denitrifiers Acinetobacter baumannii N1 (AC), Pseudomonas aeruginosa N2 (PA) and Aeromonas hydrophila (AH) were constructed. The nitrate (NO3--N) reduction efficiency of the SMC reached 97 % with little nitrite (NO2--N) accumulation, compared to the single-culture systems and co-culture systems. In the SMC, AH proved to mainly contribute to NO3--N reduction with the assistance of AC, while PA exerted NO2--N reduction. AC and AH secreted N-hexanoyl-DL-homoserine lactone (C6-HSL) to promote the electron transfer from the quinone pool to nitrate reductase. The declined N-(3-oxododecanoyl)-L-homoserine lactone (3OC(12)-HSL), resulting from quorum quenching (QQ) by AH, stimulated the excretion of pyocyanin, which could improve the electron transfer from complex III to downstream denitrifying enzymes for NO2--N reduction. In addition, C-6-HSL mainly secreted by PA led to the up-regulation of TCA cycle-related genes and provided sufficient energy (such as NADH and ATP) for aerobic denitrification. In conclusion, members of the SMC achieved efficient denitrification through the interactions between QQ, electron transfer, and energy metabolism induced by N-acyl-homoserine lactones (AHLs). This study provided a theoretical basis for the engineering application of synthetic microbiome to remove nitrate wastewater.
更多
查看译文
关键词
Aerobic denitrification,Quorum quenching,Synthetic microbial community,Multi-omics,Microbial interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要